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Taking account of shear strain, formulas to determine the Lam6 coefficients, 
and the principal radii of curvature of coordinates of points of the middle 

surface of an arbitrary shell of revolution after it has been loaded by an axi- 
symmetric load, are obtained in a quadratic approximation. The Lam6 co - 
efficients and the radii of curvature of the deformed shell satisfy Codazzi - 

Gauss conditions and their associated compatibility equations for finite strain. 
It is shown that the finite strain compatibility equations obtained in 

this paper from the condition that the strain incompatibility tensor [l] of a 
three-dimensional solid equals zero, are satisfied identically if the small 
strain components satisfy the appropriate linear equations of strain compati - 

bility of the shell middle surface. 

1. Finite strafn compatibility conditions of the middle sur - 
face of shells of revolution. We start from the fact that the strain incompat- 

ibility tensor, equal to the difference between the Riemann - Christoffel tensors in the 

states of strain Rkrmn and no strain rkrmn is zero 

R krmn - rkrmn = 0 (1.1) 

Here and henceforth, the capital Latin letters will denote functions of the state of 
strain, while the analogous lower case letters will denote the state of no strain. The 

subcripts k, r, m, n and others will run through values from 1 to 3. 

The components of the Riemann - Christoffel tensor are expressed in terms of 

Christoffel symbols of the first hind Pkr,,, and components of the metric tensor Gag 
as follows [ 21: 

R ap,m, ap,,i- 
krmn= --- ax' ask 

+ GaS(PpmrPank - Pptnkpanr) (1.2) 

(Xr are material coordinates of points of the medium ; summation from 1 to 3 is car- 

ried out over the repeated subscripts ) . The tensor rkrmn has an analogous form. 

Defining the finite strain tensor Err as half the difference between the metric tensor 

components [ 2 ] 

Ekr = ‘12 (Gk, - gkr) (1.3) 

we rewrite the compatibility equations (1.1) in the form 

aenmk ‘Enmr 

asp- 
axk + Gae [(&lmr + ppmr) (gunk + punk) - 

(1.4) 
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(bk - &T-MC) &Znr + her)] - $“’ (?-$nrPunk - Pfmk$kznr) = 0 

(1.5) 

The contravariant components of the metric tensor Gab are defined as elements 
of the inverse matrix Gab 121: 

II Gab II = II Gas II-l = II &.a + %a,8 II-’ 
The elements of this matrix can be obtained as follows [ 11: 

Ga$ = 1 aG 
YTqaGBa 7 G = det II GaB II (1.6) 

Substituting (1.6) into (1.4) permits getting rid of the metric tensor components 
in the state of strain in the compatibility equations. 

A further conversion of the compatibility equations (1.4 ) in general form is inex- 
pedient because of their awkwardness. Let us convert these equations for axisymmetric- 

ally deformable shells whose material coordinates are mutually orthogonal in the initial 
state. In this case 

g,, = g2s = g1, = 0, 62 = G,, = 0, El2 = E22 = 0 

Introducing the Lami coefficients h(k) for orthogonal coordinates [ 1 ] 

g11 - -h d, g,, = h&v gss = hd (1.7) 

we express the strain tensor components in terms of their physical components &It,.) 

Elcr = h&$&r) (1.6) 

Six Lami relationships [1] were used in converting the compatibility equations 

(1.4 ) . Under the assumption of a linear distribution law for the Lam& coefficients over 
the thickness for axisymmetric shells of revolution, these relationships reduce to two 
Coda& -Gauss relations 

d h 
A_--- 

() da, r2 
ldCO, &(;$)+!+o 
~1 da1 

(ho = h (1 + $) 7 h(2) = h2(l + 2) 9 h(2) = 1) 

(1.9) 

Here h,, h, are Lam6 coefficients of the shell middle surface, rl, 5 a= 
its radii of curvature, otl = xi is the curvilinear coordinate directed along the shell 

generator, z = Z is the rectilinear coordinate orthogonal to the middle surface 
of the undeformed shell (this latter is shown by curve 1 in the Fig. 1 and directed to - 
ward itr outer normal (Fig. 1) . 

The second relationship in (1.9 ) becomes an identity for a shell of revolution, 

upon compliance with the first. 
Let us refer the deformations &I to the shell middle surface. 



Geometric characteristics of shells of revolution 343 

If a linear distribution of the displacements 
over the shell thickness is used, the following 
dependences can be obtained between the fi- 
nite strains of an arbitrary point of the shell 

Etks) on one hand, and the finite strains 
of the middle surface &kr and changes in 
the curvatures Xrr , on the other: 

&II) (1 + e) = El1 + 2x11 (l* lo) 

622) (1 + 6) = 822 + 2x22 

E(l3) (1 + t) = El3 -t 2x13 

E(33) = 833, x33 = 0 

Fig. 1 

The components of the finite Strain tensor of the middle surface ekr and Xkr 
can be expressed in terms of the components of the small strain tensor ekr and the 
change in the curvatures xkT if ( 3.9.1) is used (see [ 11. It hence follows ( 6 is 
the angle of normal rotation to the shell middle surface) 

El1 = ell + ri2 [err2 + (a - 2e,Jal, e22 = ez2 -I- 'f2eaaa (1.11) 
& 33 = l/2+2, El3 = e13 + 'I2 ellt+ 

XII = %I + & [ell (2rlxll - ell) + t12 - 4e;,] * 

X22 = x22-k e22 
( 
x22 -$ 

1 2' 
x13 = $xll6 

The remaining components of 8kr and Xkr vanish. It can be shown, and it 
is done so in [ 31, for instance, that for axisymmetric shells 

1 d0 6 dlL> --- 
“’ - h1 da1 ’ x22= ll,k,da, 

(1.12) 

Substituting the relationships ( 1.5 ) and (1.6 ) into the strain compatibility equations 

(1.4 ) , referring the expressions obtained after this to the shell middle surface by using 
(1.7 ) -( 1.10 ) , and limiting ourselves to a quadratic approximation, we arrive at two 

differential relationships 

d 
- --_ 
da1 [ ;I dd,, @ze22) + zdz + 2 +3]+ $$5?3,-rlXll- r2Xi2)+ t1.13) 

g [2e33hl+ 822 - 2833 + rlxll+ r2x22)-(ell + rlXll) x 

6522 -t-r2x22) - 483 + ;$I [(e22 - e,,)$jf + !$e,, (rlXI1 - 

811 + 2822 - k33)- 2813.$+ ~ 
1 
+ $$& h-l- 822) + 

2h2&13 (+z + $2) + 2 $2 (r2Xz2 - e22 - 2ess) = 0 



which are the finite strain compatibility equations of the middle surface of a shell of 
revolution. After substituting (1.11) and (1.12 ) therein, the compatibility equations 
can be reduced to the form 

(1.14) 

This latter expression corresponds to the linear part of the small strain compatibility 
equation for axisymmetric shells of revolution [ 3 1. 

Taking into account that for arbitrary strains the factor in the parenthesis is not 
zero, there follows from the second equation in (1.14) 

Y=O (1.15 1 

The first equation in (1.14) evidently becomes an identity upon conservation of 

the condition ( 1.15 ), 
Therefore, the finite strain compatibility equations of axisymmetrically deformed 

shells of revolution will be satisfied identically if the linear compatibility equation 

(1.15 ) is satisfied, 

2, Detsrminatfon of the geometric chotrctsrictica of a da - 

formed shell. Let us use the dependence between the Lam6 coefficients in the de- 

formed and undeformed states [ 43 

Ii * = hr 1/l + 2Ell, II:! = hz 1/‘1 + 2ezs (2.1) 

Substituting (1.11) into (2.1) , expanding the factors for h, and hs in power 

series and limiting ourselves to squares of the small strain components, we obtain 

I$, = h, II + err -I- ‘is (6 - 2e,,)‘q, H, = h, (1 ,-I- ezz) (2.2) 

To determine the radii of curvature of the deformed surface RI and R, , we 
use the formulas presented in the monograph [ 5 ] 

(2.3) 

Here E,, Es, Es are basis directions of the state of strain. 

Let us connect the radius vector of the strain state R to the radius-vector of the 

initial state r and the displacement vector II 
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R=r+u (2.4) 

This equality permits expression of the unit basis vectors of the state of strain in 
terms of the basis vectors of the undeformed state e,, e2, es. 

Following [ 11, we write (RI, R, are covariant basis vectors) 

El=%, E2+ 
1 (RI = ‘gl, R, = ‘&) (2.5 1 

Expanding the displacement vector u with respect to basis vectors of the initial 
state and taking the derivative of R with respect to the coordinate a,, we obtain 

R1=&+$el+ zle2+ a~e3+u1~+u2a$+u3~ (2.6 1 1 1 1 1 1 

(u = wl + u2e + u3e3) 

Furthermore, using the derivation formulas for an axisymmetric surface [ 53 

ael h 8% _ 0 ae3 - h, e 

aa, = - < e3y aa, ’ aa, T l 

we convert (2.6 ) to 

R, = h, I(1 + en) e, - (43 - 2e13)e31 

It is possible to obtain analogously 

Rs = h2 (1 + e22)e2 

(2.1) 

(2.8 1 

In these latter formulas 

ell +?.L++, ez2=&$,+z 
Ul 1 au, 

6-2e13=---_G 
r1 1 

To determine the unit basis vectors of the state of strain, it is sufficient to multiply 
(2.7 > and (2.8 ), respectively, by 1/l + 2.~ and 1/l + 2.~~~ in conformity 

with (2.1) and (2.5). Expanding the last factors in power series, and multiplying, we 

obtain to the accuracy used 

El = [I - v2 (fi - 2 e,3)21e, - (1 - ell) (6 - 2e,,)e3, E,= e, (2.9) 

We obtain the third basis vector E3 by multiplying E, vectorally by E,, which yields 

E, = (1 - ell) (t3 - 2e,,)e, + [l - 1/2 (6 - 2e,3)21 e3 (2.10) 

Now substituting (2.4),(2.5),(2.9), (2. 10) into (2.3) ,differentiating and limit- 
ing ourselves to the squares of the deformation, we obtain 

1 
* -=- 

Rl l.1 L 
1 - ell + et1 - + (6 - 2e13)2] + k [(I - ZL70) X 

& (6 - 2e13) - (6 - 2el3)$] 

(2.11) 

1 *I 1 -=- 
fi2 r2 c 

- es2 + ei, - + (6 i 2e13)2] + & ‘2 (6 - h3) X 
11 1 

(1 - ell - e22) 
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If there is no shear strain (ers = 0), then 

I -=- 
4 il P--e 11 + e;1- + 6") + x11(1 - 2e11) - ;$$ 

1 -=- I (1 - ez2 + e& - S CE”) + 
R, rz 

xz2 (1 - ell - e22> 

In order for the middle surface of the shell obtained after deformation to remain con - 
tinuous , it is necessary that the Lami coefficients and its radii of curvature satisfy the 

Codazzi - Gauss conditions (1.9 ) , which are written for the state of strain in the form 

d H2 

( j 

1 dH2 _. 
------, 
da1 & R1 da1 

&(&y$j+g$=o 
(2.12) 

Substituting the expressions (2.2 ) for the Lami coefficients and (2.11) for the radii 
of curvature for the state of strain into the last relationships, and subtracting expressions 

corresponding to the Codazzi - Gauss conditions for the state without strain (1.9) from 
(2.12), we arrive at two equations after tedious manipulations 

& [(I - ell) W = 0, [I - ell + $ & (6 - 2els)] Y = 0 (2.13) 

where the quantity y is determined by the equality in the parentheses in (1.14). 
The nonlinear equations (2.13 ) will evidently be satisfied if the linear equation ( 1.15 ) 

is satisfied. Therefore, the expressions obtained to determine the Lami coefficients (2.2 ) 
and the radii of curvature (2.11) for the strained shell correspond to the continuity condi - 

tions for its middle surface. 

Let the coordinate ~1~ of some point a (Fig. 1) corresponds,in the undeformed 
state, to an angle o measured from the axis of symmetry to the direction of the nor- 
mal es to the shell middle surface. An angle SJ which we define as follows 

Q = o + Ao, Aw = arc cos (E,.e,) 

corresponds to this same point (the point A ) with the coordinate a, in the state of strain. 

Using (2.10 ) , we obtain 

Am = arc cos [1 - */* (S - 2e,,)Y 
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